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Abstract. The magnetic and transport properties of ferromagnetic clusters embedded in a
metallic host are studied. A simple model is presented to explain the observed behaviour of
the magnetoresistance in such systems. The role played by both the dipolar interaction between
the clusters and the ratio of the electronic mean free path in the non-magnetic material to the
average inter-cluster distance is clarified. Finally, a suggestion is made of systems in which the
best magnetoresistance ratios are expected to be found.

In the past few years, great interest has been focused on the study of granular metallic
systems consisting of single-domain ferromagnetic clusters embedded in a non-magnetic
metallic matrix. The discovery of the giant magnetoresistance (GMR) effect in these
materials [1, 2] has raised the possibility of their use in the construction of reading heads,
sensors, and other magnetic devices. Among those systems we have Cu–Co [1–3], Cu–
Fe [2], Co–Ag [4, 5], and Fe–Co–Ag [6] alloys. From the point of view of practical
applications, granular systems are very convenient. They are relatively easy to produce,
thermally stable, and exhibit magnetoresistance amplitudes that may be comparable to or
even larger than those of multilayers in the usual CIP geometry [7, 8]. All of these facts
have motivated the search for the granular materials with the best GMR ratios.

In the present paper, we investigate the magnetoresistance of granular materials. We
show that the magnitude of the effect is strongly dependent on two factors, namely, the
presence of short-range ferromagnetic correlation between this and the clusters, and the
relation between this and electronic mean free path. We use a simple model for the resistivity
[9], which considers only the relative orientation of the magnetic moments of the clusters,
ignoring scattering within the grains, all of which are of the same size.

We have found that, within this simple model, the magnitude of the effect is essentially
controlled by two factors, namely, the presence of a short-range ferromagnetic correlation
between the magnetic moments of the clusters, and the relation between the electronic mean
free path in the non-magnetic material and the average inter-cluster distance. Taking these
points into account, we have succeeded in explaining the observed behaviour of the GMR
in granular metals, as well as in predicting the conditions under which the effect is expected
to be maximized.

The GMR effect is thought to be related to the spin-dependent scattering of conduction
electrons and the reorientation of the magnetic moments by an external magnetic fieldH
[9, 10]. ForH = 0, the total magnetic momentsµi of the clusters are oriented in such a
way that the net magnetization of the system is zero and the resistance in both the up-spin
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and down-spin channels is high. However, the alignment of the moments by the magnetic
field leads to a short-circuit effect in one of the spin channels, with a significant reduction
in the total resistanceR of the system. The field dependence of the alloy resistivityρ is
well described by a simple model proposed by Gittlemanet al [9], according to which

ρ = ρ0− κ〈cosθij 〉3 (1)

whereρ0 andκ are constants, andθij is the angle between the magnetic momentsµi and
µj of clustersi andj . The average of cosθij in equation (1) is taken over pairs of clusters
separated by distances not much larger than the electronic mean free path3 in the non-
magnetic material [11, 12]. The constantκ depends on spin-dependent scattering processes
both inside and at the surface of the grains. Here, for simplicity, we have assumed that all
of the total magnetic momentsµi of the clusters have the same magnitudeµ. GivenH , it
follows from equation (1) and the usual definition of the magnetoresistance1R/R that

1R/R = κ ξ3(H)− ξ3(0)
ρ0− κξ3(0) (2)

where ξ3(H) = 〈cosθij 〉3 is a field-dependent dipole–dipole correlation function. This
quantity plays a central role in our present discussion of the GMR effect.

Clearly, ξ3 depends on the interaction between the clusters. In the simplest situation
in which the clusters can be regarded as non-interacting, one can easily show [2, 11] that
ξ3 = m2, wherem = ∣∣∑i µi

∣∣ /(Nµ) is the reduced magnetization andN is the number of
clusters in the system. In such a case, it follows from equation (2) that1R/R is a quadratic
function of m. Deviations from such a parabolic relation have been observed in several
systems [11, 13], and have been interpreted as evidence of the interaction between the
magnetic clusters [11, 13, 14]. However, as we demonstrate in the present communication,
the magnitude of the deviation is also strongly dependent on the ratio of3 to the average
inter-cluster distance.

We remark that, even in the presence of interaction between the clusters, for values
of H close to the saturation fieldHS, one still finds thatξ3(H) ' m2. Hence, the
magnetoresistance in that regime behaves as1R/R ' a − bm2, where a and b are
appropriate constants. In view of this, it is convenient to introduce the so-called reduced
magnetoresistance [11], defined as(

1R

R

)
red

= (1R/R)− a + b
b

which reduces immediately to(1R/R)red = 1 − ξ3(H). For real systems, curves for
(1R/R)red versusm correspond usually to flattened parabolas [11], instead of the simple
1−m2 curve characteristic of non-interacting clusters.

Recently, we have investigated the coupling between magnetic clusters in granular
materials [15]. We have shown that for clusters whose sizes and spatial distributions are
consistent with the experimental data, the coupling between them is entirely dominated by
the classical dipolar interaction. In addition, we have demonstrated that the total energy
of the system is well described by replacing each cluster by an effective magnetic moment
located at its ‘centre of mass’.

Here, we are concerned with the magnetic field dependence of the resistance of
granular materials. Our approach is based on the theory discussed above and Monte Carlo
simulations, which enable us to determineξ3 as a function ofH and3. We obtain curves
for (1R/R)red versusm for different systems, and find that the observed flattening of these
curves can be understood in terms of short-range ferromagnetic correlations and the ratio
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of 3 to the average inter-cluster distance. Finally, we discuss experimental situations in
which the best GMR ratios can be found.

We consider systems withN single-domain magnetic clusters that are represented by
effective magnetic dipolesµi [15], and typically with 103 atoms each. We first show that
in the limiting case in which3 is very large (3 = ∞), i.e. when the average of cos(θij )
is taken over all dipole pairs, a simple and general relation between(1R/R)red andm is
obtained. In fact, from the definition of the reduced magnetization we find that

Nm2 = 1

Nµ2

∑
i

µ2
i +

2

Nµ2

∑
i>j

µi · µj .

The first term on the r.h.s. of this equation is equal to 1, whereas the second is just
(N − 1)〈cosθij 〉∞. Thus, we haveξ∞ = (Nm2− 1)/(N − 1), and consequently(

1R

R

)
red

= N

N − 1
(1−m2). (3)

We emphasize that this quadratic relationship does not depend on either the positions of the
clusters or the interaction between them. It holds in general, provided that3 is sufficiently
large. In addition, forN � 1, it reduces to the result for non-interacting clusters. Therefore,
it is clear that the observed deviations from the simple parabolic behaviour must be related
to the actual magnitude of3 and the dependence of〈cosθij 〉 on that parameter. In order
to make this point clearer, we investigate in detail some specific cases.

We consider compact arrays of magnetic clusters, represented by magnetic moments
µi , both in two (2D) and three (3D) dimensions. The positions of the moments in all of
the cases under consideration in this work have been determined according to the following
prescription. The magnetic moments were initially located at the sites of either a square
(2D case) or cubic (3D case) lattice, with the lattice parameter equal to 70Å, which
corresponds to the average distance between ferromagnetic Co clusters in CoxCu1−x systems
(x ∼ 10 at.%) [11]. However, because the spatial arrangements of the clusters in ordinary
granular materials are disordered, we have randomly displaced the positions of the moments
with respect to the lattice sites according to a gaussian probability distribution, with zero
average and 10̊A standard deviation, in each space direction.

Given the position of the clusters in space, the energy of the system can be written as

E{µ1 · · ·µN,H} =
1

2

∑
i 6=j

Eij −
N∑
j=1

µj ·H

whereEij is the classical dipolar pair interaction between clustersµi andµj . Thus, using the
standard Monte Carlo procedure [16] (106 thermalization steps and 103 steps for ensemble
averages), we are able to find the equilibrium configurations of the various systems, and
calculate their reduced magnetizationm and the dipole–dipole correlationξ3 for different
values of3 andH . Our calculations have been performed for temperaturesT such that
kBT is small as compared to the interaction energy of the system.

Let us first discuss the 2D case. Figure 1 shows a snapshot of a system with 441 magnetic
clusters in the absence of externally applied magnetic fields. It represents one of the possible
microscopic states of the system, which has been reached after the thermalization procedure.
The reduced magnetizationm of this configuration is found to be negligible. Thus, if3 were
comparable to the linear dimensions of the system,ξ3=∞(0) would also be negligible and
(1R/R)red very close to 1. However, the presence of disorder in the atomic arrangement
in the non-magnetic metal, as well as temperature effects, should lead to much smaller
values of3. The actual value of3 depends on both the growth conditions and any heat
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Figure 1. A snapshot of one of the equilibrium configurations of a 2D system with 441 dipoles
(see the text).
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Figure 2. The correlation around the central dipole shown in figure 1.

treatment that the sample has been subjected to. If we assume that3 is of the order of
the average inter-cluster distance (in our case, 70Å), we obtain for the configuration in
figure 1 thatξ3(0) = 0.32 and(1R/R)red = 0.68. This significant reduction in(1R/R)red
is in line with what has been found experimentally, and can be understood from a simple
inspection of the orientation of magnetic moments in figure 1. It is clear from this figure
that the dipolar interaction favours the formation of vortex structures [14], which leads to
the appearance of a short-ranged ferromagnetic correlation between the moments. Thus, for
small values of3, ξ3(0) turns out to be positive, which yields a smaller magnetoresistance
effect. We can make this point more precise by introducing the quantity

ξ
(i)
3 =

1

N
(i)
3

∑
j (6=i)

cos(θij )2(3− Rij )
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whereN(i)
3 is the number of clusters whose distancesRij to clusteri are smaller than or

equal to3, and2(x) is the Heaviside step function. We present in figure 2 the curve for
ξ
(i)
3 as a function of3 for the central cluster in figure 1. It clearly shows a decreasing

ferromagnetic correlation around the central cluster, extending up to a distance of 200Å.
Similar results are obtained for the other clusters in the system.

Having the above results in mind, we proceed to investigate the dependence onH

of both (1R/R)red andm, considering different values of3. For each field intensity,
Monte Carlo calculations have been performed to determine the equilibrium configuration
of the system. Figure 3 shows results for(1R/R)red plotted againstm for the 2D array
of 441 clusters. For values of3 close to the average inter-cluster distance, we find that
the curves exhibit a pronounced flattening in the small-m region, in agreement with the
existing experimental data [11]. However, as3 increases the curves become less flattened
and rapidly approach the 1− m2 parabola, almost reaching this limiting behaviour when
3 is about twice the average inter-cluster separation. We have tested the accuracy of our
results by repeating the calculations for systems with different numbersN of clusters, and
found no significant deviations from the results presented here, provided thatN > 100.

0.0 0.2 0.4 0.6 0.8 1.0

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 

 

 

o

o

R
__

__
∆ ( 
   

   
) re

d
R

 

o

o

Figure 3. The reduced magnetoresistance as a function of the reduced magnetization of a 2D
system with 441 dipoles, for different values of3. The full line corresponds to the behaviour
predicted by equation (3) (3 = ∞).

Similar behaviour of the reduced magnetoresistance as a function of the reduced
magnetization has been found in the case of 3D arrays of dipoles. In figure 4 we present
results for a system of 437 dipoles and different values of3. Also in this case, the curves
corresponding to3 close to the average inter-cluster distance can be described as flattened
parabolas. They, nevertheless, nearly coincide with the 1− m2 parabola when3 is about
twice the average inter-cluster separation. It is important to mention that this particular
behaviour of the GMR effect with changes in3, predicted by our present calculations, is
in agreement with what has been observed experimentally by Alliaet al [11]. In fact, Allia
et al have found a clear reduction in the flattening of the curves for(1R/R)red versus
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m for CoxCu1−x systems after the samples had been subjected to heat treatment. Such a
process allows the rearrangement of the atoms in the system, with a consequent increase in
the electronic mean free path in the non-magnetic material.
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Figure 4. The reduced magnetoresistance as a function of the reduced magnetization of a 3D
system with 437 dipoles, for different values of3. The full line corresponds to the behaviour
predicted by equation (3) (3 = ∞).

We emphasize that, according to our model, the flattening of the curves for(1R/R)red
versusm results from the combination of two factors, namely, the appearance of short-
ranged ferromagnetic correlation between the moments induced by the dipolar interaction,
and the magnitude of3 relative to the average inter-cluster distance. These points can be
used as guidelines for the design of systems with the best GMR ratios. The simplest case
would be that of a 2D arrangement of magnetic clusters along parallel lines, such that the
distanceD between the lines is greater than the separationd between the clusters inside
the lines, but smaller than3. To clarify our ideas, we have considered two chains of ten
clusters each, in which the clusters are 70Å apart, and such that the distance between the
chains is 85Å. As a consequence of the dipolar interaction, the orientation of the magnetic
moments inside the lines is ferromagnetic, whereas the two lines have their magnetizations
oriented antiferromagnetically. If we now take3 = 115 Å, we find thatξ3(0) = −0.2,
which leads to an enhancement in the reduced magnetoresistance of about 20% with respect
to the highest value so far observed for granular materials. Figure 5 shows curves for
(1R/R)red as a function ofm for such a system, corresponding to different values of3.
As we can see, the highest values of(1R/R)red are achieved for a particular combination
of geometrical factorsD andd, and3. Finally, we point out that even higher values of the
reduced magnetoresistance can be achieved by considering sequences of lines of clusters
rather than a single pair of lines. Moreover, if we polarize the sample perpendicularly to
the chains, it is mainly the correlation length of the electrons in the direction of the applied
electric field that matters. In this particular case, we can easily verify that an enhancement
of up to 100% in(1R/R)red can be obtained, for appropriate values ofD, d, and3.
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Figure 5. The reduced magnetoresistance versus the reduced magnetization of a 2D system
consisting of two lines of ten dipoles each, for different values of3. The full line corresponds
to the behaviour predicted by equation (3) (3 = ∞).

At this point, we would like to clarify that a cluster of 1000 Co atoms in a perfect fcc
structure (with a lattice constant of 3.6̊A) has a radius of 14.2̊A. Then, distances between
grains of the order of 70̊A and 3 values of the order of 70̊A or greater are perfectly
compatible within our model. We have also made simulations without the restriction that
all grains have the same size. Within our model, size effects also contribute to the flattening
of the magnetoresistance curve.

The role of the magnetic moment distribution as regards the magnetoresistance, without
considering dipolar interactions among the grains, and based on the theory of Zhang and
Levy [17] and the measurements of Rabedauet al [18], has recently been studied by Ferrari
et al [19].

It is clear that a microscopic theory of transport would necessarily consider the spin-
dependent scattering mechanisms, and then the particle size and shape anisotropy of the
grains have to be considered. However, in this work our attention was centred on the
dipolar interaction between grains and how this affects the correlation between magnetic
moments, and, consequently, the scattering probability for an electron moving from one
magnetic grain to another. Thus, the effect of the dipolar interaction and electronic mean
free path on the magnetoresistance of the system has been investigated.

In conclusion, we have presented a simple model to explain the observed behaviour of
the magnetoresistance of granular materials as a function of the reduced magnetization of
the system. We have clarified the role played by both the dipolar interaction between the
clusters and the magnitude of the electronic mean free path in the non-magnetic material
in determining the magnitude of the GMR effect. In addition, on the basis of the results
obtained here, we have proposed systems in which the best GMR ratios are expected to be
found.
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